% EKUMEN O

:2ROS 2
Migration:

Paths, Pitfalls,
and Why
. g It's Urgent

ROS Noetic’s support ended in May
2025, making migration to ROS 2
urgent. This expert-led guide explains
why you need to migrate now, the
best strategies to do it, common

pitfalls to avoid, and practical steps
to prepare your system. Get clear
insights to ensure a smooth, efficient,
and future-proof transition to ROS 2.

~

-

6666666 6 6® 6 6 ® ®

ROS to ROS 2 Migration

Choosing your migration strategy

Phased Migration

Gazebo versions considerations

Parallel Validation

Preparing your codebase for migration

Parallel Validation

About DDS and alternative RMWs

Testing and CI for safe migration

Pitfalls to avoid

Migration week 1 checklist

References

™y

W ROS to ROS 2
Migration

Authors:

(Alexis Pojomovsky) (Michel Hidalgo) (Ivan Paunovic>
Why migrate ROS Noetic reached end of life in May 2025, ending official updates
and security patches. Although it is technically possible to continue

now? using ROS, doing so means your team would need to take full
ownership of maintaining, building, and shipping your robotics stack
independently. You can choose to stay on ROS for the foreseeable
future, but this comes with the hidden cost of having to maintain
every part of your stack alone, while losing the community backing
and collective momentum that come with an actively supported
ecosystem. For most teams, especially startups that need to focus
on improving their product rather than maintaining infrastructure,
staying on ROS is rarely a practical long-term choice.

eeecoccccoce

ROS 1 NOETIC

| |
ROS 2 HUMBLE (LTS)
——

ROS 2 JAZZY (LTS)

NOETIC EOL (UNSUPPORTED)

2020 2021 2022 2023 2024 2025 , 2026 2027 2028 2029 2030

Timeline of ROS distribution support, Noetic’s EOL, Humble’s active window, and Jazzy’s long-term support.

In contrast, ROS 2 offers a stable, scalable, and secure framework
with multi-robot support and a modern architecture better suited
for production systems. Migrating is not just maintenance; it is a
chance to modernize your stack, reduce technical debt, and align
with current engineering practices for robotics.

4

summary

Migration strategy

All-at-Once

.' .

Migration

Migrating to ROS 2 requires a strategy aligned with your system’s
complexity, risk tolerance, and operational needs. Common
approaches include:

ALL-AT-ONCE MIGRATION: PHASED MIGRATION:
Rewrite and deploy the system Gradually migrate while
on ROS 2 in one move. maintaining partial
ROS operation.

Each approach has trade-offs that require careful consideration.
To de-risk either strategy, the complementary practice of parallel
validation should be used to test the migrated system against a
known baseline.

Choosing your
migration strategy

This approach involves fully rewriting your system in ROS 2 before
deployment, switching over in a single step. It allows:

e A clean architectural refresh, removing legacy workarounds
and technical debt.

e Adoption of ROS 2 paradigms, including lifecycle nodes,
deterministic execution, and modern launch practices.

e Alignment with supported ROS 2 distributions and tools
from the start.

- J
However, it also means:
. . . N
e | ong development periods without a working system.
e Higher integration and validation effort concentrated
at the end.

e Significant upfront risk.

N J

4

realsense2_camera_node

[velodyne_driver_node

object_detector_node) -------

/velodyne_points

: lod femd_vel ("
________________ : ros1_bridge L2 e dlff_drlve_controllerj

For most mid to large robotics projects, this approach is rarely
practical due to the complexity of hardware integrations,
cross-dependencies across subsystems, and operational uptime
requirements. It is generally more suitable for smaller projects,
early-stage products, or highly isolated systems where freezing
ROS development during migration is feasible.

Phased Migration

Phased migration allows you to migrate incrementally while keeping
your system operational, using the ros1 bridge for
interoperability. This approach supports node-by-node,
topic-by-topic, or container-based migration, gradually replacing
parts of your system while maintaining continuous operation.

Containerizing ROS, ROS 2, or both during migration is also an
option, as it can help isolate dependencies and reduce environment
conflicts. However, it brings its own set of challenges related to
networking, hardware access, and orchestration. For clarity, this
section focuses on host-based installations. Still, most of the
concepts discussed here can also be applied to a fully
containerized strategy.

To apply phased migration effectively, it is important to carefully
analyze the data flowing through your system's topics. The
ros1_bridge can introduce latency and bottlenecks, especially when
bridging high-bandwidth data streams such as camera feeds or
point clouds. Ideally, topics carrying heavy data should be
produced and consumed by nodes running on the same ROS
version to avoid unnecessary overhead during migration.

Jodom

rtabmap_slam_node}

/detected_objects]
/detected_objects

Keep raw sensor data in a single version of ROS; bridge only lightweight topics.

4

At the same time, phased migration comes with trade-offs that

teams should plan for:

ROS Noetic runs on Ubuntu
20.04, while current ROS 2
LTS distributions like Humble
are officially
binary-distributed under
Ubuntu 22.04.

N

Building ROS 2 Humble on
Ubuntu 20.04 from source is
possible, and it's actually an

officially supported target.
It's also Tier 3, which means

it doesn’t get as much
attention as other officially
supported targets. This said,
it could be a decent starting
point given its LTS nature.

Using an older ROS 2
distribution like Galactic
(already EoL as of July 2025)
could also be a valid
intermediate step during
migration, provided it is
treated as a temporary
measure with a clear plan to
transition to a supported ROS
2 distribution once the
migration stabilizes.

GGazebo versions
considerations

Migrating from ROS to ROS 2 often requires moving from Gazebo
Classic to the newer Gazebo simulator, aligning your simulation
stack with your modernization efforts. While there is official guidance
on which Gazebo versions pair with each ROS 2 distribution, aligning
these can become tricky if you target intermediate, source-built ROS
versions during migration. Although this is typically less critical than
your ROS version decisions, simulator alignment can still introduce

friction if not planned for early.

To navigate this, consider the following:

e Most recent Gazebo versions, like Harmonic, align with current ROS 2 distributions and newer OS
versions, but may be difficult to adopt if your system is anchored on Ubuntu 20.04 during migration.

4

(N

e Using Gazebo Garden or Fortress can be a practical way to test and validate your ROS 2
components under Ubuntu 20.04 while your system is still in transition. However, Gazebo has
seen significant fixes, new features, and performance improvements in its most recent versions.
Targeting older versions may limit your access to these advancements and can introduce friction
if your expectations are not aligned with the capabilities they have to offer.

Vs

e Treat the use of Garden or Fortress as a temporary measure, with a clear plan to transition
to Gazebo Harmonic once your system is fully migrated to ROS 2 and operating on a newer
OS environment.

These intermediate steps should be seen as pragmatic rungs on the
migration ladder rather than final destinations. They allow you to
maintain momentum while incrementally modernizing your stack,
provided there is a clear plan to converge on fully supported
distributions and tools once your ROS 2 migration is stable.

Teams adopting phased migration need to balance the operational

benefits of incremental migration with the engineering effort and
technical debt of maintaining intermediate states.

Parallel Validation

V

Parallel validation is a complementary approach that should be
integrated with either an all-at-once or phased migration to de-risk
the process. It involves establishing a robust set of end-to-end tests
before porting to create a clear baseline of your system's expected
behavior. This baseline helps validate that the new ROS 2 system
achieves the same functionality.

A practical approach is to record real-world scenarios using ROS
rosbags, then convert these bags to ROS 2 format. By replaying this
data under ROS 2, you can exercise your system under the same
conditions used for validation in ROS, enabling accurate comparisons
of behaviors, outputs, and performance.

Potential advantages:

Encourages the
development of
integration and

Creates a clear Consistent, Reduces migration
behavioral baseline repeatable testing risk by detecting

before migration using real-world discrepancies early in
regression tests as

part of the migration
strategy.

begins. data. the process.

Things to keep in mind:
e A\
e This approach does not replace live testing with hardware
and sensors, which is still necessary to validate your
e System end-to-end.

Reliably implementing these tests is a difficult task. They
can be prone to flakiness due to timing sensitivities or
message transport inconsistencies, and they can break
when system interfaces are modified.

® Changes in message definitions require you to update your
tests and regenerate or convert existing rosbags, which
adds maintenance overhead to the migration process.

. J

Parallel validation is particularly valuable for high-reliability systems
and teams seeking to de-risk their migration while continuing
development and operations under ROS.

> Preparing your
codebase for migration

Regardless of which migration strategy you choose, the state of your
current ROS codebase will significantly influence your migration’s
complexity and risk.

4

In many robotics systems, ROS-specific interfaces and core
business logic are tightly coupled inside nodes, making it difficult to
isolate what needs to change during migration. A practical, often

' overlooked approach is to refactor parts of your codebase before
migration to separate ROS-specific concerns (nodes, message
handling, service calls) from system business logic and algorithms.

ROS is much more than a communication layer, and in many
systems, logic is often coupled to other ROS components beyond
messaging. For example, tf/tf2 is deeply tied to how coordinate
frame transformations are handled within algorithms, and
actionlib may drive goal-oriented workflows tightly integrated
with system behavior. Additionally, it is common to see ROS
message types used directly as general-purpose data structures
within business logic, further entangling system code with
ROS-specific dependencies. These dependencies do not always
translate cleanly into ROS-agnostic structures, and forcing
abstraction in these areas can introduce unnecessary complexity
without clear migration benefits.

In practice, a straightforward pattern can help prepare your
codebase for migration. Often, a ROS node that instantiates and
uses a ROS-agnostic class is sufficient, keeping your system’s core
logic clean while handling all ROS communications, transforms, and
other ROS-specific concerns within the node itself. The more your
business logic remains ROS-agnostic, the less you will need to
modify during migration, effectively reducing the surface of change,
which is directly tied to the risk introduced by the migration process.
This structure allows your ROS node to explicitly orchestrate
communication and ROS integrations while keeping your business
logic independent and reusable across different environments,
including testing frameworks and the eventual ROS 2 system.

Adopting this preparatory structure can:

Keep core logic fully Reduce the surface Simplify porting efforts
unit-testable and area of migration to by clearly isolating
stable throughout primarily the ROS what changes between

migration. interface layers. ROS and ROS 2.

4

Parallel Validation

ASPECT

Communication

Discovery

Launch

Security

Parameter
management

Build system

Simulation

Investing in this preparation can de-risk your migration, regardless
of whether you pursue an all-at-once or phased migration. It is
especially valuable for large, long-lived robotics systems where
stability and testability are critical.

ROS
(NOETIC)

TCPROS/UDPROS

Centralized
(roscore)

XML

None

Global

catkin

Gazebo Classic

ROS 2
(HUMBLE/JAZZY)

DDS (default)
or Zenoh

Decentralized

Python (.launch.py),
XML, YAML

(optional)
DDS Security

Node-local,
declared

colcon
with ament

Gazebo
(AKA Gazebo Ignition),
Isaac Sim, O3DE

IMPACT

Requires RMW
selection and
QoS tuning

Removes single
point of failure

Python enables dynamic,
conditional launches with
higher verbosity

Encryption and
authentication available

Requires adapting
parameter handling

Workspace-based builds,
advanced dependency
management

Plan simulator updates
as part of migration

About DDS
and alternative RMWs

ROS 2 uses DDS by default for scalable communication, but it is not
limited to DDS-based RMWs. Zenoh has recently emerged as an
alternative middleware option, offering low-overhead, efficient
communication, especially in wide-area or lossy networks.
However, Zenoh is the new kid on the block within the ROS
ecosystem and is officially supported starting from ROS Iron and
newer distributions.

If your migration is taking place on ROS Humble or older, it might be
advisable to start with a well-established DDS implementation such
as CycloneDDS or FastDDS. While Zenoh is promising, adopting it
prematurely on unsupported distributions may expose you to issues
that have since been resolved in later ROS 2 and OS releases. At
this stage, our goal is simply to raise awareness of Zenoh’s
existence for future evaluations, rather than to recommend it as

the default choice during your migration.

Testing and CI
for safe migration

A structured testing approach reduces migration risk and increases
confidence in your system:

Unit tests for core

logic using GTest

(C++) and Pytest
(Python).

7

N\ N\ \

Integration tests with
Launch_pytest or
launch_testing to
validate node
interactions.

System tests using
simulation and
rosbag2-converted
replays for ROS 2
validation with
existing ROS data.

Cl pipelines using
GitHub Actions and
industrial_ci for
linting, building, and
automated testing.

O

>

Pitfalls to avoid

Missing ROS 2
package equivalents
during system audits,

leading to delays
later in the migration
process.

Misconfigured QoS
or middleware
parameters causing
inconsistent runtime

Underestimating the
differences in ROS 2
parameter
management, which

N\

Relying indefinitely on
the ros1l bridge
without a clear plan
for decommissioning.

behavior.

can affect runtime
assumptions.

N\

>

Migration (week 1)
checklist

RE R

NER R

X

Announce your migration plans internally
to align stakeholders.

Schedule ROS 2 training for your team.
Set up a ROS 2 test environment

Audit your ROS stack for dependencies and
package availability.

Test the ros1_bridge on a small subsystem.

Select a low-risk node as a pilot
migration candidate.

Draft your migration plan with clear phases
and goals.

Track progress with KPIs such as migration coverage, test pass
rates, and pre/post-migration performance benchmarks to
maintain momentum.

A4

References

ROS vs ROS2: Key differences, benefits, and why the future belongs to ROS2 - RoboticsBiz %“é\

The ROS vs ROS 2 Transition - Southwest Research Institute

CYN ()

Migrating Two Large Robotics ROS Codebases to ROS2 - InfoQ

/‘\

Migrating a large ROS codebase to ROS 2 - ROSCon

Experiences with ROS 2 on our robots and what we learned on the way

() (=)

Discussion on ROS to ROS2 transition plan

How to migrate a ROS project from ROS to ROS2

launch_pytest: a framework for launch integration testing

(N (2 (D)

https://roboticsbiz.com/ros1-vs-ros2-key-differences-benefits-and-why-the-future-belongs-to-ros2/
https://www.swri.org/markets/industrial-robotics-automation/blog/the-ros-1-vs-ros-2-transition
https://www.infoq.com/news/2019/10/migrating-ros1-ros2/
https://roscon.ros.org/2019/talks/roscon2019_migrating_a_large_ros_1_codebase_to_ros_2.pdf
https://discourse.ros.org/t/experiences-with-ros-2-on-our-robots-and-what-we-learned-on-the-way/26637
https://discourse.ros.org/t/discussion-on-ros-to-ros2-transition-plan/6155
https://roboticsbackend.com/migrate-ros-project-from-ros1-to-ros2/
https://docs.ros.org/en/rolling/p/launch_pytest/index.html

/
& EKUMEN

contact@ekumenlabs.com

ekumenlabs.com
L]

F® 0o X
/

https://ekumenlabs.com/
https://www.facebook.com/ekumenlabs
https://www.linkedin.com/company/ekumenlabs/
https://www.instagram.com/ekumenlabs/
https://github.com/Ekumen-OS
https://x.com/ekumenlabs

